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Diels-Alder reactions of trichloroacetamido-l,3-dienes as 
well as attempting to prepare, by similar routes, more reac­
tive Diels-Alder 1,3-dieneamides. 
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Association of Isocyanide Complexes of Rhodium(I) 
and Rhodium(III) in Solution 

Sir: 

We have found that rhodium complexes of the type 
(RNC) 4 Rh + and trans-(RNC)4RhX2

+ (R = alkyl; X = 
halide) undergo appreciable association in solution. Pre­
viously, three other types of interaction between d8 and d6 

complexes have been recognized. ( I ) A number of Pt(II) 
and Pt(IV) complexes associate in the solid state to form 
columns constructed of alternating quasi-planar Pt(II) and 
six-coordinate Pt(IV) centers.1 In these columns halide Ii-
gands are located between platinum atoms in the column 
and no direct metal-metal bonding is present. (2) A differ­
ent arrangement occurs in Krogmann's salt, 
K2Pt(CN)4Cl0 3 2(H2O)2S- In this case, reaction of 
P t (CN) 4

2 - with Pt(CN) 4Cl 2
2 - produces a solid which con. 

sists of stacks of Pt(CN) 4 units with direct platinum-plati­
num bonds.2 (3) In solution the Pt(II)-catalyzed substitu­
tion reactions of Pt(IV) complexes are conventionally inter­
preted as involving a transient, ligand-bridged Pt(II)-
Pt(IV) species.3 

Electronic spectra, infrared spectra, and synthetic studies 
demonstrate the occurrence of the equilibrium shown in (1). 
Solutions containing both (CeHnNC) 4 Rh + and trans-
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(RNC) 4 Rh + + trans- (RNC) 4RhX 2
+ (RNC) 8Rh 2X 2

2 + 

(D 
(CeHnNC) 4 RhI 2

+ have a unique electronic spectrum 
which differs from that expected from the sum of the spec­
tra of (C 6 H 1 1 NC) 4 Rh + and 7/WW-(C6Hi1NC)4RhI2

+ 4-6 
This is demonstrated in Figure 1 where the new absorption 
at 452 nm is readily apparent. Analysis of the spectra of 
various combinations of (C 6 Hi 1 NC) 4 Rh + and trans-
(C 6 HnNC) 4 RhI 2

+ in acetonitrile solution at 25 0 C has 
given a value of 4.7 X 103 for the equilibrium constant for 
reaction 1. Similar spectra have been observed in other sol­
vents, but the magnitude of the equilibrium constant de­
creases as the dielectric constant of the solvent decreases 
( /^(solvent): 5.8 X 103 (dimethyl sulfoxide); 2.8 X 103 

(nitromethane); 3.2 X 102 (acetone); no adduct could be de­
tected in dichloromethane or chloroform solution). Similar­
ly (C 6 Hi 1 NC) 4 Rh + and (C 6 HnNC) 4 RhBr 2

+ associate in 
acetonitrile to form (C6H1]NC)8Rh2Br2

2 + (X max, 415 nm, 
Keq = 2 X 104). 

Reaction 1 may also be detected by infrared spectrosco­
py. In acetone solution (C 6 HnNC) 4 Rh + and trans-
(C 6 HnNC) 4 RhI 2

+ have a single isocyanide stretching fre­
quency at 2170 and 2239 cm - 1 , respectively. A mixture of 
these two complexes in acetone solution exhibits, in addition 
to these two bands, a new absorption at 2214 cm - 1 ; no 
other new bands due to the adduct could be detected in the 
region 2400-1700 c m - 1 

Similar spectroscopic evidence for the formation of the 
following other adducts in acetonitrile or acetone solution 
has been found: (CH 3NC) 8Rh 2I 2

2 + ; («-C4H9-
NC) 8Rh 2 I 2

2 + ; (C 6H 5CH 2NC) 8Rh 2 I 2
2 + ; (C6Hi1NC)8-

Rh2Cl2
2 + . Mixtures of (7-C4H9NC)4Rh+ with either (7-

C 4 H 9 NC) 4 RhI 2
+ or (7-C4H9NC)4RhBr2

+ in acetonitrile or 
acetone give no evidence for the formation of adducts. 

Favorable solubility conditions have allowed the isolation 
of [ (C 6HnNC) 8Rh 2 I 2 ] [B(C 6H 5 ) 4 ] 2 as red-brown crystals 
[Anal. Found for Ci0 4Hi2 8B2I2N8Rh2 : C, 63.66; H, 6.67; 
N, 5.40; I, 12.45; ir (Nujol mull) 2208 cm"1 K C = N ) ; Xmax 

(Nujol mull) 410, 465 nm]. This solid may be isolated ei­
ther from an equimolar mixture of (C 6 HnNC) 4 Rh + and 
7/WW-(C6H11NC)4RhI2

+ or by oxidizing ( C 6 H n N C ) 4 R h + 

with 0.5 mol of iodine. 
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The two most likely structures for (RNC) 8Rh 2X 2
2 + are 1 

and 2. No electron spin resonance spectra have been detect­
ed for these adducts. The proton magnetic resonance spec­
tra of mixtures of (RNC) 4 Rh + and (RNC) 4 RhI 2

+ indicate 
that the equilibrium (eq 1) is rapid on the 1H N M R time 
scale; only a single averaged type of R group is observed. 
The infrared spectra indicate that only terminal, not bridg­
ing, isocyanide ligands are present. The observation that the 
electronic spectra of the adducts depend on the halide indi­
cates that at least one halide is present as a ligand. Since 
there is no increase in the electrical conductivity of acetoni­
trile solutions of (C 6 HnNC) 4 Rh + and (C 6 Hi 1 NC) 4 RhI 2

+ 

after mixing, it appears that no halide is released upon ad-

400 450 500 
WAVELENGTH (nm) 

Figure 1. Electronic spectra of: A, 2.5 X 10"4M (C 6H nNC) 4Rh+ ; B, 
2.5 X 10"4 M (C6-HnNC)4RhI2

+; C, 2.5 X lO"4 formal 
(C 6H nNC) 4Rh+ and 2.5 X 1(T4 formal (C6H11NC)4RhI2

+ in aceto­
nitrile solution at 25 0C with.a 1 -mm path length cell. 

duct formation. Structure 2 is appealing since it requires lit­
tle atomic motion to assemble, but it is difficult to account 
for the nonexistence of (7-C4H9NC)8Rh2X2

2 + on the basis 
of this structure. Additionally, no affinity of (RNC) 4 Rh + 

for free halide has been detected; consequently it is difficult 
to imagine that (RNC) 4 Rh + would exhibit a tendency to 
bind to a coordinated halide of a cationic complex. If the 
adduct possesses structure 1 then the lack of formation of 
(7-C4H9NC)8Rh2X2

2 + can be ascribed to steric interfer­
ence between adjacent ligands. The observation of only a 
single isocyanide stretching frequency in the infrared spec­
trum of the adduct is also more in accord with structure 1. 
For such a structure with D^ symmetry two infrared active 
stretching frequencies with b2 and e symmetry are expected 
and the e mode should be significantly more intense.7 Struc­
ture 2 should produce four infrared active isocyanide 
stretching modes. These adducts are formally Rh(II) 
species and a number of Rh(II) complexes with direct rho­
dium-rhodium bonds are known.8 However, 
(RNC)8Rh2X2

2 + are the first Rh(II) species which show 
significant degrees of disproportionation in solution. We are 
exploring how adduct formation between Rh(I) and 
Rh(III) complexes bears on the mechanism of oxidative-
addition, the isomerization of Rh(III) complexes, and the 
preparation of complexes with unusual oxidation states. 
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Coordination Geometries and Bond Types in 
Three-Coordinate Phosphine Complexes of Copper(I), 
Silver(I), and GoId(I) 

Sir: 

It has recently been shown that the bidentate ligand 2,11-
bis(diphenylphosphinomethyl)benzo[c]phenanthrene (PP)' 
forms square planar complexes of the type [MX2(PP)] (M = 
Ni(II), Pd(II), and Pt(II), X = halide ion) in which the two 
phosphorus atoms span trans positions.2 We report here the 
syntheses of complexes [MCl(PP)] (M = Cu(I), Ag(I), and 
Au(I)) and discuss their conductivities in solution in terms of 
their molecular geometries obtained from crystal structure 
determinations. 

The complex [CuCl(PP)] was prepared by mixing acetone 
solutions of PP and CuCl2-6H20. The corresponding silver and 
gold complexes were obtained similarly starting from AgCl 
and [AuCl(Ph3P)], respectively. Pure crystals suitable for 
x-ray diffraction, were obtained by slow crystallization from 
benzonitrile (Cu and Au) and acetonitrile (Ag). 

The structures of [CuCl(PP)]-PhCN, [AgCl(PP)], and 
[AuCl(PP)] have been determined from three-dimensional 
diffractometer data and refined to conventional R values of 
7.4, 4.5, and 3.8%, respectively. The important parameters 
describing the coordination geometries are summarized in 
Table I. The metal atoms are coordinated to two phosphorus 
atoms and one chlorine atom. The deviations of M from the 
plane of the ligands are 0.012 A (Cu), 0.066 A (Ag), and 0.040 
A (Au). 

The most striking feature of this set of structures is the 
change in PiMP2 bond angles which increase from 132° (Cu) 
to 141° (Ag) to 176° (Au). Thus, in the latter compound the 
donor atom geometry is practically T-shaped. The observed 
M-Cl bond lengths are all shorter than the corresponding sums 
of the ionic radii3 (by 0.55 A (Cu), 0.56 A (Ag), and 0.36 A 
(Au)), but they exceed the standard distances obtained by 
adding the covalent radius of chlorine3 and the single-bond 
radii of the metals6 (by 0.06 A (Cu), 0.19 A (Ag), and 0.49 A 
(Au)). At the same time the average M-P distances become 
shorter than the corresponding sum of reference radii (by 0.04 
A (Cu), 0.01 A (Ag), and 0.13 A (Au)). Thus, the lengthening 
and weakening of the M-Cl bonds are compensated by a 

Figure 1. Schematic drawing of ligand conformations projected along 
the approximate twofold axis of the benzo[c]phenanthrene skeleton. 

shortening and strengthening of the M-P bonds made possible, 
in part, by the concomitant opening of the P -M-P angles. This 
correlation of changes in bond lengths and angles may be used 
as a model of the minimum energy pathway4 that leads from 
three-coordinate to two-coordinate complexes, or of the reverse 
process. 

The ligand PP occurs in two different conformations, in the 
copper and silver complexes the -CH2PPh2 groups point in 
opposite directions while in the free ligand5 and in the gold 
complex they point in the same direction (see Figure 1). 

The complexes [MCl(PP)] represent the first complete set 
of compounds of Cu(I), Ag(I), and Au(I), of the type [MXL2] 
(L = tertiary phosphine), for which structural data have been 
obtained as no crystal structure determination of mononuclear 
complexes [AgX(R3P)2] appears to have been reported. 

Comparison of structural data for [CuBr(Ph3P)2]6 (Cu-Pi 
= 2.282 (3) A, Cu-P 2 = 2.263 (3) A, P 1 -Cu-P 2 = 126.0 (1) 
A) and for the PP complex shows that the donor atom 
geometries in the two complexes are very similar. On the other 
hand, the P i -Au-P 2 bond angle in [AuCl(PP)] differs con­
siderably from that found in [AuCl(Ph3P)2]7 (Au-Pi = 2.323 
(4) A, Au-P 2 = 2.339 (4) A, P 1 - A u - P 2 = 132.1 ( l ) ° ) . A d i -
rect inference from these comparisons is that while the ligand 
PP can adopt coordination geometries similar to those of the 
corresponding complexes with monodentate tertiary phos-
phines, its steric requirements are such that it imparts some 
preference for linear P - M - P bonds and thus it provides a 
useful probe for assessing the relative tendencies of metal ions 
to form trigonal vs. digonal complexes. 

The different nature of the M-Cl bonds in the [MCl(PP)] 
complexes is also reflected by their molar conductances. These 
were determined in nitromethane and acetonitrile over a range 
of concentrations8 and some of the data are given in Table I. 

Table I. Molar Conductances (in ohm 
Complexes [MCl(PP)] 

cm2 mol ' for 1 0 3 M solutions at 25°) and Coordination Geometries (with esd's) for 

M A(CH3NO2)" A(CH3CN)" 

Cu 7.2 insol. 
Ag 18.3 18.6 
Au 65.5 83.0 

" Values quoted for solutions of 1: 
in CH3CN.9 

^(P i -M) 

2.258(2) 
2.458(3) 
2.307(2) 

I electrolytes ran 

^(P 2 -M) 

2.217(4) 
2.411(3) 
2.310(2) 

rf(M-Cl), A 

2.222(2) 
2.514(4) 
2.818(3) 

ge from 75 to 95 ohm - 1 cm2 mol -

^(PiMP2) 

131.9(1) 
140.7(1) 
175.7(1) 

a(P,MCl) 

104.8(1) 
98.2(1) 
90.4(1) 

1 in CH 3 NO 2 and from 120 to 

a(P2MCl),deg 

123.3(1) 
120.9(1) 
93.4(1) 

160 ohm - 1 cm2 mol - 1 
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